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Context: Although GH promotes growth and protein anabolism, which are ATP-dependent pro-
cesses, the GH effect on mitochondrial regulation remains to be determined.

Objective: Our objective was to determine the acute effect of GH on mitochondrial oxidative
capacity in skeletal muscle of healthy subjects.

Design and Setting: The study was a randomized crossover design at an academic medical center.
Participants: Nine healthy men and women completed the study.

Intervention: GH (150 ug/h) or saline was infused for 14 h on separate days, and muscle biopsies
were obtained.

Main Outcome Measures: Outcome measures included mitochondrial function, gene expression,
and protein metabolism.

Results: The 4-fold increase in plasma GH caused elevations in plasma IGF-I, insulin, glucose, and
free fatty acids and a shift in fuel selection, with less carbohydrate (—69%) and leucine (—43%)
oxidation and 29% more fat oxidation. Muscle mitochondrial ATP production rate and citrate
synthase activity were increased 16-35% in response to GH. GH also resulted in higher abundance
of muscle mRNAs encoding IGF-I, mitochondrial proteins from the nuclear (cytochrome c oxidase
subunit 4) and mitochondrial (cytochrome ¢ oxidase subunit 3) genomes, the nuclear-derived
mitochondrial transcription factor A, and glucose transporter 4. Although GH increased whole-
body protein synthesis (nonoxidative disposal of leucine), no effect on synthesis rate of muscle
mitochondrial proteins was observed.

Conclusions: These results demonstrate that acute GH action promotes an increase in mitochon-
drial oxidative capacity and abundance of several mitochondrial genes. These events may occur
through direct or indirect effects of GH on intracellular signaling pathways but do not appear to
involve a change in mitochondrial protein synthesis rate. (J Clin Endocrinol Metab 93: 597-604,
2008)

uman GH promotes organ growth and is an important reg-
H ulator of fuel metabolism in both health and disease. GH
receptors have been identified in most tissues including muscle,
adipose tissue, liver, heart, kidney, brain, and pancreas (1, 2).
The recognized actions of GH include protein anabolism, pro-

motion of lipolysis, and resistance to insulin-induced glucose
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metabolism in liver and peripheral tissues (1-3). Several studies
demonstrated that both acute and chronic GH infusion reduces
urea synthesis, promotes protein synthesis, and typically results
in reduction of protein breakdown in humans (4-10). These
anabolic actions are particularly evident when GH is replaced
in patients with GH deficiency or when given therapeutically

Abbreviations: AU, Arbitrary units; BHAD, B-hydroxyacyl coenzyme A dehydrogenase;
COX3, cytochrome c oxidase subunit 3; ERR-a, estrogen-related receptor-a; GCRC, Gen-
eral Clinical Research Center; GLUT4, glucose transporter 4; IGFBP, IGF-binding protein;
MFN2, mitofusin 2; MHCI, slow-twitch isoform of the contractile protein myosin heavy
chain; mTOR, mammalian target of rapamycin; NEFA, nonesterified fatty acids; NRF1,
nuclear respiratory factor 1; PDK4, pyruvate dehydrogenase kinase 4; PGC-1«, peroxi-
some-proliferator receptor-y coactivator 1«; STATS, signal transducer and activator tran-
scription 5; TFAM, mitochondrial transcription factor-o; UCP3, uncoupling protein 3.
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in catabolic conditions like fasting, surgery, burns, or illness
(1, 11).

Growth, protein synthesis, and many components of fuel me-
tabolism are ATP-requiring processes that may increase ener-
getic demands on mitochondria, but GH effects on mitochon-
drial function are not fully established. There is some evidence
that GH action may be important for mitochondrial regulation
in skeletal muscle. A case study of a patient with acromegaly
demonstrated that structural abnormalities of muscle mitochon-
dria were resolved after surgical treatment, although no func-
tional results were provided (12). Lange et al. (13) reported that
when older women combined GH injections with aerobic exer-
cise training for 12 wk, they had a greater increase in activity of
muscle mitochondrial oxidative enzymes than exercising women
who received a placebo injection. However, that study did not
include a group taking GH without exercise, so it is not known
whether GH could regulate mitochondria oxidative capacity in-
dependent of the exercise program. In contrast, when nonexer-
cising rats were given daily GH injections for 2 wk, there was no
change in muscle mitochondrial respiration rate (14). The last
dose of GH in that study was given 1-2 d before the muscle
measurements, however, so any acute effects of GH action may
not have been detectable. To our knowledge, no studies have
reported whether administration of GH regulates muscle mito-
chondrial function in humans. The present study was designed to
test the hypothesis that GH would induce an increase in mito-
chondrial oxidative capacity and expression of oxidative genes
and to define the effects of GH on muscle protein synthesis,
including mitochondrial proteins. We investigated the acute ef-
fect of GH by infusing GH or saline for 14 h in young healthy
volunteers in the postabsorptive state in a randomized crossover
study design. Muscle biopsies were used to measure mitochon-
drial ATP production rate, mitochondrial protein synthesis rate,
and the abundance of several gene transcripts that regulate to the
muscle oxidative phenotype.

Subjects and Methods

Participants

Nine healthy volunteers (five men, four women) completed the study.
Average characteristics (mean = sD) of the group were age 33 = 10 yr,
body mass index 25.2 + 3.2 kg/m?, body fat-free mass 50.8 + 14.6 kg,
and body fat 26.4 = 7.4%. Body composition was determined using
dual-energy x-ray absorptiometry. Health status was assessed by medical
history, physical exam, blood chemistries (including liver enzymes, cre-
atinine, electrolytes, and glucose), complete blood count, urinalysis, and
electrocardiogram. Inclusion criteria included age (18—45 yr) and body
mass index (20-30 kg/m?). Exclusion criteria included diabetes, chronic
renal, liver, or other metabolic/endocrine disorders, or use of tobacco or
medications that could affect metabolism. None of the participants were
taking medications at the time of the study. Female participants were
studied during the luteal phase of their menstrual cycle. The Institutional
Review Board of Mayo Foundation approved the study protocol. All
procedures were performed in accordance with the guidelines in The
Declaration of Helsinki and were clearly explained to each study vol-
unteer before obtaining informed oral and written consent.
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Protocol and procedures

Each participant was studied once with saline infusion and once with
GH infusion in a randomized crossover design. The two trials were sep-
arated by an average of 10 wk with regular lifestyle patterns maintained
in the interim. For 3 d before each study, strenuous physical activity was
avoided and a weight-maintaining diet (55:30:15% of energy as carbo-
hydrate, fat, and protein, respectively) was provided by the Metabolic
Kitchen at the Mayo Clinic General Clinical Research Center (GCRC).
On the evening before each study, participants were admitted for an
overnight stay in the GCRC. After the evening meal (1800 h), no food
was consumed until completion of the study the next day.

A polyethylene catheter was placed in an antecubital arm vein for
infusion of either saline or GH (150 ug/h; 2.1 = 0.1 pg/kg-h) beginning
at 2200 h and continuing for 14 h. At 0400 h the next morning, priming
doses of 1-[1,2-13C]leucine (6.9 umol/kg, 97 atom percent excess; MA
Trace, Woburn, MA) and ["*C]bicarbonate (2.4 umol/kg; 99 atom per-
cent excess; Cambridge Isotopes, Andover, MA) were given, and the
[1,2-13C]leucine was continued at 6.9 umol/kg-h until the end of the
study (1200 h). Isotope solutions were prepared under sterile conditions
and were determined to be bacteria and pyrogen free before their ad-
ministration. At 0600 h, a second catheter was placed in the hand op-
posite the infusion site and used to obtain arterialized blood each hour
using the heated hand vein method (15). Expired breath was sampled
hourly, coinciding with blood collections. Muscle biopsies of the vastus
lateralis were obtained under local anesthesia (16) at 0700 and 1200 h,
each obtained from a different leg within the study day. Both biopsies of
each study day were used for protein synthesis and mRNA measure-
ments. Mitochondrial and signal protein analyses were performed only
on the second biopsy. A portion of the muscle was kept on ice in saline-
soaked gauze for mitochondrial studies, and the remainder was rapidly
frozen in liquid nitrogen and stored at —80 C until analysis.

Resting energy expenditure was determined by indirect calorimetry
(DeltaTrac; SensorMedics, Yorba Linda, CA) for 45 min beginning at
approximately 0800 h. The last 20 min of this measurement were used
for data analysis. Urinary nitrogen content was measured using a Beck-
man GM7 Analox Microstat (Beckman Instruments, Fullerton, CA).

Muscle mitochondrial function

Mitochondria were isolated by centrifugation from fresh muscle tis-
sue, and ATP production capacity was assessed using a bioluminescent
method (17, 18). Briefly, mitochondria were added to cuvettes contain-
ing luciferin/luciferase (BioTherma, Haninge, Sweden), 0.3 mm ADP,
and one of six substrate combinations. Substrates used were (in mm) 10
glutamate plus 1 malate (GM), 1 pyruvate plus 0.05 palmitoyl-L-carni-
tine plus 10 a-ketoglutarate plus malate (PPKM), 10 a-ketoglutarate
(KG), 20 succinate plus 0.1 rotenone (SR), 1 pyruvate plus 1 malate
(PM), and 0.05 palmitoyl-L-carnitine plus 1 malate (PCM). ATP pro-
duction was measured simultaneously for all reactions in triplicate at 25
C in a BioOrbit 1251 luminometer. Each reaction was calibrated using
an internal ATP standard. A separate piece of muscle (20 mg) was used
to measure the activity of citrate synthase and B-hydroxyacyl coenzyme
A dehydrogenase (BHAD) using spectrophotometric assays (17).

Quantification of mRNA

Abundance of selected mRNAs in muscle was measured with a real-
time quantitative PCR system (ABI Prism 7700; PE Biosystems, Foster
City, CA). RNA was extracted by TRIZOL method (Life Technologies,
Gaithersburg, MD), treated with DNase (Life Technologies), and re-
verse-transcribed using TagMan reverse transcription reagents (PE Bio-
systems). Transcripts measured included IGF-I, because it is a major
effector of GH action, and the mitochondrial components cytochrome ¢
oxidase subunit 3 (COX3) and 4 (COX4), and uncoupling protein 3
(UCP3). Nuclear transcription factors involved in regulation of muscle
oxidative genes were also measured: peroxisome-proliferator receptor-y
coactivator 1a (PGC-1a), nuclear respiratory factor 1 (NRF1), estrogen-
related receptor-a (ERR-a), mitofusin 2 (MFN2), and mitochondrial
transcription factor-a (TFAM). Two additional genes associated with
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muscle oxidative capacity were measured: glucose transporter 4
(GLUT4) and the slow-twitch isoform of the contractile protein myosin
heavy chain (MHCI). Samples were run in triplicate with coamplification
of the target gene and 28S rRNA (as a housekeeping gene) and quantified
by normalizing the target signal for the 28S rRNA signal. For each gene,
the average transcript abundance in the saline trial was assigned a value
of 1.0, and all individual values from both the saline and GH trials were
linearly transformed relative to this value and expressed in arbitrary units
(AU).

Sequences for the following primers and probes have been previously
published: COX3 (18), COX4, PGC-1a, NRF1, TEAM, GLUT4 (19),
MHCI, and 28S rRNA (20). The primers used for IGF-I (GenBank ac-
cession number X57025) were forward CCAGCGCCACACCGA and
reverse CTCCCTCTACTTGCGTTCTTCAA, and the probe sequence
was ATGCCCAAGACCCAGAAGGAAGTACA. Corresponding infor-
mation for the other genes is as follows: UCP3 (GenBank AF011449)
forward primer CTCAAGGAGAAGCTGCTGGACTA, reverse primer
GCTCCAAAGGCAGAGACAAAGT, and probe ACCTGCTCACT-
GACAACTTCCCCTGC; ERR-a (GenBank NMO004451) forward
primer AGATTGTGGTCACCATCAGCTG, reverse primer TCCA-
CACGCTCTGCAGTACTG, and probe CCAAGAGCATCCCAG-
GCTTCTCA; and MFN2 (GenBank NMO014874) forward primer
GGCTCGGAGGCACATGAA, reverse primer CGGTGCTCTTC-
CCATTGC, and probe CGTCCGGCCAAAAAAAGCCA.

Western blotting

Sufficient tissue was available in five of the nine subjects to measure
the phosphorylation status of two key signaling molecules that regulate
protein synthesis. Frozen muscle samples were prepared, separated by
polyacrylamide gel electrophoresis, and transferred to polyvinylidene
difluoride membranes as previously described (21). After blocking in
nonfat milk, membranes were incubated overnight at 4 C with primary
antibodies directed against the total or phosphorylated (Ser 2448) forms
of the mammalian target of rapamycin (mTOR; Cell Signaling Technol-
ogy, Danvers, MA), and the total or phosphorylated (Thr 37/46) form of
translation elongation binding protein 4E-BP1 (Cell Signaling). After
incubation with horseradish peroxidase-conjugated secondary antibod-
ies and the ECL-Plus detection system (Amersham Biosciences, Piscat-
away, NJ), images were captured on Biomax XAR film (Kodak Scientific,
New Haven, CT) and analyzed using Kodak Molecular Imaging soft-
ware. Data are expressed as the ratio of phosphorylated to total protein
signal for each subject. The group average in the saline trial was then
assigned a value of 1.0, and all individual values from both the saline and
GH trials were linearly transformed relative to this value and expressed
in AU.
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Hormone and metabolite assays

Glucose was measured with a Beckman Glucose Analyzer (Beckman
Instruments, Porterville, CA). Nonesterified fatty acids (NEFA) were
measured using an enzymatic colorimetric assay (NEFA C; Wako Chem-
icals USA, Richmond, VA). Plasma levels of amino acids were measured
by an HPLC system (HP 1090, 1046 fluorescence detector and cooling
system) with precolumn o-phthaldehyde derivatization (22). Hormone
assays were performed by the Mayo Clinic Clinical Chemistry Labora-
tory. Insulin and human GH were measured with two-site immunoen-
zymatic assays (Access system; Beckman Instruments, Chaska, MN).
Glucagon and C-peptide were measured by direct RIAs (Linco Research,
St. Louis, MO). After separation from their binding proteins with a
simple organic solvent, total IGF-I and IGF-II were measured with two-
site immunoradiometric assays (Diagnostic Systems Laboratories, Web-
ster, TX). IGF-binding protein (IGFBP)-1 and -3 were also measured
with two-site immunoradiometric assays, whereas IGFBP-2 was mea-
sured by a double-antibody RIA (Diagnostic Systems Laboratories).

Plasma amino acid kinetics

The enrichment level of [1,2-13C]leucine in plasma was determined
using a gas chromatograph/mass spectrometer (HP5973; Hewlett-Pack-
ard Instruments, Avondale, CA) by multiple ion monitoring at m/z 342/
344 under positive ion methane chemical ionization conditions. [1,2-
13C]Ketoisocaproate in plasma was determined as its quinoxalinol-
trimethylsilyl derivative under electron ionization conditions using an
HP5988 gas chromatograph/mass spectrometer (23). Isotopic enrich-
ment of breath '*CO, was measured by isotope ratio mass spectrometry
(24). Average steady-state enrichment values from 0700-1200 h (cor-
responding to the muscle biopsy times) were used to calculate whole-
body rates of leucine flux, oxidation, and nonoxidative disposal using
standard equations (24).

Muscle protein synthesis

A portion of each muscle sample was used for the isolation of mito-
chondrial and sarcoplasmic protein fractions by differential centrifuga-
tion (16). A separate piece of tissue was used to prepare total mixed
muscle proteins and to isolate free tissue fluid amino acids (25). The
muscle protein fractions were hydrolyzed overnight in 0.6 M HCl in the
presence of cation exchange resin (AG-50; Bio-Rad, Hercules, CA) and
purified the next day using a column of the same resin. The amino acids
were dried and then derivatized as their trimethyl acetyl methyl ester.
['3C]Leu enrichment in muscle proteins was determined using a gas chro-
matograph-combustion-isotope ratio mass spectrometer (8 Plus; Finigan
MAT, Bremen, Germany) as described (26). Tissue fluid amino acids
were derivatized as their #-butyldimethylsilyl ester and analyzed using an

TABLE 1. Plasma metabolites and hormones (mean =+ sem)

Saline GH % Difference® P value
Glucose (mmol/liter) 5.10 £ 0.13 541 +0.15 6 0.004
Fatty acids (mmol/liter) 0.452 = 0.036 0.892 = 0.063 97 0.001
Insulin (pmol/liter) 34+ 6 57 + 6 68 0.001
C-peptide (nmol/liter) 0.42 + 0.04 0.63 + 0.03 48 0.001
Cortisol (ug/dl) 148 £ 1.1 142 +19 —4 0.689
Glucagon (pg/ml) 141 = 8 135+ 8 -4 0.007
GH (ung/liter) 23+1.0 12.2+1.1 425 0.001
IGF-I total (ng/ml) 314 + 37 367 + 33 17 0.096
IGF-I free (ng/ml) 0.87 £ 0.10 1.74 = 0.26 101 0.004
IGF-Il (ng/ml) 717 =70 651 + 49 -9 0.090
IGFBP-1 (ng/ml) 379 +6.7 205+59 —46 0.030
IGFBP-2 (ng/ml) 372 = 60 344 + 54 -7 0.211
IGFBP-3 (ng/ml) 3621 + 170 3444 + 143 -5 0.019

Values shown are the average of blood samples collected at 0700 and 1200 h, corresponding to 9 and 14 h of infusion with either saline or GH.

2 GH vs. saline.
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HP5973 gas chromatograph/mass spectrometer under electron ioniza-
tion conditions (26). The fractional synthetic rate of muscle proteins was
calculated from the increment in protein-bound enrichment between
biopsies, using muscle tissue fluid enrichment as the precursor pool (25).

Statistical analysis

Summary data are reported as mean *+ SEM. Differences between the
saline and GH trials were analyzed using paired ¢ tests. P values < 0.05
were considered statistically significant.

Results

Plasma metabolites and hormones

GH infusion resulted in significant elevations in circulating
GH, glucose, NEFA, insulin, C-peptide, and free IGF-I, whereas
there were reductions in glucagon, IGFBP-1, and IGFBP-3 during
the last 5 h of the study (Table 1). There were also trends for
increased total IGF-1 and reduced IGF-II. There were no differ-
ences between trials for cortisol or IGFBP-2. The total concen-
tration of measured amino acids in plasma was not different
between trials (2.47 = 0.11and 2.40 = 0.12 mmol/liter for saline
and GH, respectively, P = 0.525), nor was there a difference for
individual amino acids, including leucine (157 = 10 and 150 =
10 wmol/liter for saline and GH, respectively, P = 0.471).

Indirect calorimetry

GH infusion did not significantly alter resting energy expen-
diture or urinary nitrogen excretion rate, although there was a
reduction in the nonprotein respiratory quotient (Table 2), in-
dicating a shift in fuel metabolism away from carbohydrate uti-
lization and toward greater reliance on fat. Calculated carbohy-
drate oxidation (grams per hour) was 69% lower, whereas fat
oxidation tended to be higher (29%, P = 0.056) in the GH trial
compared with saline.

Muscle mitochondrial function

Enzymatic activity of citrate synthase in muscle homogenates
was significantly increased (16 %), and BHAD showed a trend to
increase (13%) in the GH trial vs. saline (Fig. 1). Likewise, GH
infusion resulted in an 8 -35% higher mitochondrial ATP produc-
tion rate, reaching statistical significance or a strong trend (P =
0.051) for five of the six substrates tested, as shown in Fig. 1.
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FIG. 1. Effect of GH on muscle oxidative capacity. Enzymatic activity of citrate
synthase (Cit. Synth.) and BHAD and mitochondrial ATP production rate (MAPR)
are shown. Paired data from individual participants are shown as connected
circles, with treatment means denoted by the adjacent bars. For MAPR,
mitochondria were incubated with glutamate plus malate (GM), succinate plus
rotenone (SR), palmitoyl carnitine plus malate (PCM), pyruvate plus palmitoyl
carnitine plus ketoglutarate plus malate (PPKM), ketoglutarate (KG), or pyruvate
plus malate (PM). P values are for paired t test comparisons between treatments.

Abundance of mRNAs

Compared with saline, GH infusion resulted in a 240 and
119% increase in IGF-I mRNA abundance at 9 and 14 h, re-
spectively (Fig. 2). None of the other mRNAs were significantly
different between trials at the 9-h measurement time. By 14 h,
however, both COX3, encoded by the mitochondrial DNA, and
COX4, encoded by the nuclear DNA, were increased by 342 and
78%, respectively, during the GH trial. However, GH did not
alter mRNA content for another mitochondrial membrane pro-
tein, UCP3. Among the nuclear transcription factors measured,
only TFAM increased (34 %) with GH infusion. GLUT4 mRNA
abundance increased 52% with GH infusion. MHCI mRNA
increased from 1.00 = 0.23 AU in the saline trial to 1.43 *£ 0.25
AU in the GH trial but did not reach statistical significance (P =
0.25).

Western blotting
The relative Ser 2448 phosphorylation level of mTOR was
1.00 * 0.13 during saline and increased in each of the five sub-

TABLE 2. Indirect calorimetry (mean = sem)

Saline GH % Difference® Pvalue
VO, (ml/min) 256 =18 245 £ 17 -4 0.318
VCO, (ml/min) 207 =17 184 =12 -1 0.063
Urinary urea nitrogen excretion (g/h) 0.38 = 0.04 0.36 £ 0.04 -6 0.717
Nonprotein RQ 0.81 = 0.02 0.75 £ 0.02 -8 0.035
Energy expenditure (kcal/min) 1.22 £0.09 1.15 £ 0.08 -6 0.208
Fat oxidation (g/h) 5.02 = 0.47 6.49 = 0.65 29 0.056
CHO oxidation (g/h) 6.43 = 1.41 1.98 £ 0.78 —69 0.027

CHO, Carbohydrate; RQ, respiratory quotient (VCO,/VO,) after adjustment for protein loss.

2 GH vs. saline.
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FIG. 2. Abundance of mRNA transcripts for selected genes measured at 9 and 14 h of GH or saline
infusion. Values for each gene are expressed in AU after normalizing for 28S rRNA signal and adjusting the
mean of the saline trial at 9 h to 1. Results are shown for IGF-I, COX3 and -4, UCP3, TFAM, PGC-1«, NRF1,

MFN2, ERRe, and GLUT4. *, GH greater than saline, P < 0.05.

jects measured to 1.76 * 0.16 during the GH trial (P = 0.020).
Phosphorylation of Thr 37/46 on 4E-BP1 was 1.00 = 0.22 dur-
ingsaline and increased in three of the five subjects to 1.42 + 0.41
during the GH trial, but this was not a statistically significant
difference (P = 0.457).

Amino acid kinetics

Whole-body amino acid kinetics are shown in Table 3.
Leucine oxidation was reduced during GH infusion, and non-
oxidative leucine disposal was increased. There was a trend for
reduced leucine flux that did not reach statistical significance. As
shown in Table 3, the infusion of GH did not result in significant
changes in the fractional synthetic rate of muscle proteins.

Discussion

The current study demonstrated that a 14-h infusion of GH caus-
ing physiological elevation of GH in healthy people resulted in
increased skeletal muscle mitochondrial oxidative capacity, as
shown by increased mitochondrial ATP production rate, in-
creased citrate synthase activity, and a trend for higher BHAD
activity. GH infusion also resulted in higher muscle content of

in healthy human subjects. A prior study
suggested that GH injections for 12 wk may
add to the effect of aerobic exercise to in-
crease muscle oxidative capacity in older
women (13), but the effect of GH alone has
not been reported. The current study indi-
cated that GH enhanced transcript abundance of genes involved
in mitochondrial biogenesis, including TFAM, the key nuclear
transcription factor regulating mitochondrial transcription and
replication. These findings are similar to recent reports that
showed that acute insulin infusion, like GH, stimulates mito-
chondrial oxidative capacity and transcript levels of several mi-
tochondrial genes (18,21, 27, 28), raising the possibility that the
actions of these hormones may overlap.

The existing literature, however, suggests that insulin and GH
probably regulate mitochondrial function though different path-
ways. For example, GH infusion caused an increase in circulating
insulin in the present study, but the concentration remained at
least 5-fold lower than used in studies reporting a stimulatory
effect of insulin on muscle mitochondrial ATP production (18,
21,27,28). GH action is known to cause insulin resistance (1-3,
10), which could further diminish any effects of the modest in-
crease in insulin during GH infusion. In the present study, GH
resulted in increased mitochondrial function despite evidence of
insulin resistance as indicated by higher insulin, glucose, and
fatty acids. This observation is an important point for distin-
guishing the regulatory actions of GH and insulin because it was
demonstrated that the stimulatory effect of insulin on mitochon-

TABLE 3. Whole body amino acid kinetics and fractional synthetic rates of muscle proteins (mean * sem)

Saline GH % Difference?® P value

Whole-body kinetics (umol/h-kg body weight)

Leucine rate of appearance 103.6 = 4.0 96.9 = 2.6 -7 0.091

Leucine oxidation 409 *+23 235*13 —43 0.001

NOLD 62.7 = 3.7 73.4 £ 3.0 17 0.018
Muscle protein synthesis (%/h)

Mixed protein 0.078 = 0.010 0.072 = 0.007 -7 0.587

Mitochondrial protein 0.102 = 0.014 0.108 = 0.013 6 0.815

Sarcoplasmic protein 0.077 = 0.007 0.067 =0.013 -13 0.596

NOLD, Nonoxidative leucine disposal.

2 GH vs. saline.
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drial ATP production is blunted in subjects with clinical insulin
resistance (18, 21, 27, 28) and in healthy individuals in whom
insulin resistance is acutely induced by raising plasma lipid con-
centration (27). In the present study, plasma fatty acid concen-
tration was nearly doubled during GH infusion compared with
saline and was accompanied by a shift in fuel metabolism toward
greater reliance on fat. This increase in fatty acids did not appear
to limit mitochondrial function, and the mitochondrial data in-
dicate that GH increased the capacity to produce ATP with the
fatty acid substrate palmitoyl carnitine or the tricarboxylic acid
cycle intermediates a-ketoglutarate (and glutamate, which is ex-
changed with a-ketoglutarate) and succinate. GH action may
therefore activate proteins in the B-oxidation or tricarboxylic
acid cycles (e.g. BHAD and citrate synthase enzymes) or other
components of the mitochondrial fuel delivery and oxidation
machinery. In contrast, GH did not stimulate ATP production
with pyruvate plus malate. This may be due to regulation of the
pyruvate dehydrogenase complex, a known control point for fat
and glucose oxidation (29, 30). During insulin-resistant condi-
tions, including fatty acid elevation, pyruvate dehydrogenase ac-
tivity is inhibited by an increase in pyruvate dehydrogenase ki-
nase 4 (PDK4) (29). It has been shown that GH induces PDK4
expression in adipose cells through a signal transducer and ac-
tivator of transcription 5 (STATS) binding site in the PDK4 pro-
moter region (31, 32). The only study, of which we are aware, to
examine whether this also occurs in muscle found that a single
bolus dose of GH given to healthy young men resulted in STATS
phosphorylation (activation) 30—60 min later but did not
change STATS binding to DNA (32). However, this single dose
of GH may not be sufficient to induce the characteristic insulin
resistance and altered fuel selection. It is also possible that
changes in DNA binding events in muscle may require more than
60 min to occur. Nevertheless, the mechanism through which
GH action regulates muscle mitochondrial substrate oxidation
remains to be elucidated.

GH action resulted in increased expression of mRNAs that
encode mitochondrial proteins COX3 and COX4 and the major
nuclear-derived transcription factor that regulates replication
and transcription of the mitochondrial genome, TFAM (33).
These responses are similar to the acute effects of insulin infusion
(18, 21, 34) and the effects of acute or chronic aerobic exercise
training (19, 35). Exercise is a potent stimulus of GH release (36),
and thus it is possible that GH action contributes to many ex-
ercise-induced adaptations, including increased mitochondrial
biogenesis and fat utilization. We explored the potential role of
the nuclear transcription factor PGC-la in mediating the
changes in mitochondria because PGC-1a is a key regulator of
muscle mitochondrial biogenesis and several related proteins
that ultimately determine muscle oxidative phenotype (37-40).
PGC-1a exerts its effects by promoting the transcription of, and
working in conjunction with, other transcription factors, includ-
ing NRF-1, ERR-a, MFN2, and TFAM, all of which have been
reported to increase in muscle in response to endurance exercise
(19, 35, 37, 38, 41). PGC-1a has also been reported to exert
positive regulatory control on the GLUT4 gene (39), which was
increased by GH in the present study and increases in response
to exercise (19, 38). There were no significant differences in
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PGC-Ta mRNA or the other transcription factors measured,
besides TFAM, at either 9 or 14 h of GH infusion. Therefore, if
the PGC-1a transcriptional pathway is responsible for the down-
stream increases in COX3, COX4, TFAM, and GLUT4 mRNA
during GH infusion, then either there were transient changes in
transcript levels occurring before our first measurement (9 h) or
the regulation occurred through changes in protein content or
DNA binding. In response to acute exercise, it was reported that
PGC-1a and ERR-a mRNA abundance is transiently increased
for only a few hours (35, 37). Whether that is also true in re-
sponse to GH elevation needs to be determined. Alternately,
regulation of the mitochondrial pathways may occur through
direct actions of GH (perhaps the STATS pathway), or second-
arily by increasing IGF-I and fatty acids. Chronic fatty acid el-
evation, for example, was shown to increase the muscle protein
content of citrate synthase, subunits of COX, and related mito-
chondrial proteins and did not appear to be regulated by PGC-
1a, which was unchanged (42). Whether the fatty acid-mediated
events also occur within the time frame of our overnight GH
infusion remains to be shown.

The increase in GLUT4 mRNA in the GH trial appears to
contradict the muscle and whole-body changes favoring in-
creased fat utilization, including the insulin resistance for glucose
metabolism shown to occur with GH treatment (2, 10). It was
previously shown that GH infusion for 6 h in healthy young men
did not alter muscle GLUT4 protein content (3). There was also
no change in muscle GLUT4 mRNA or protein in rats treated
with GH for 4 wk (43). Thus, the mechanism and functional
impact of the increased GLUT4 mRNA in the present study is not
yet clear.

We found that GH had no effect on muscle protein synthesis,
including mitochondrial proteins. We previously showed that
insulin infusion could selectively increase synthesis of mitochon-
drial proteins in skeletal muscle, thus potentially contributing to
insulin-mediated stimulation of mitochondrial oxidative capac-
ity (18, 44). This is the first report, to our knowledge, on the
effect of GH on synthesis of subfractions of the total muscle
protein such as mitochondrial or sarcoplasmic proteins. This
measurement technique has been used to demonstrate changes in
synthesis of muscle proteins with aging or exercise (20, 45), so it
seems unlikely that an effect of GH would not be detected. A
limitation, however, is that the measurements represent the av-
erage synthesis rates of multiple individual mitochondrial or sar-
coplasmic proteins. It is possible that GH has a selective effect on
synthesis of specific proteins, particularly those proteins with
increased mRNA abundance. Interestingly, the lack of effect of
GH on muscle protein synthesis rate occurred despite an in-
creased activation (phosphorylation) of mTOR, a key energy-
sensing anabolic signal molecule that contributes to the regula-
tion of transcription and translation. However, the lack of
change in the phosphorylation of 4E-BP1, a downstream effector
of mTOR action, indicates that the pathway leading to increased
protein synthesis rate was not fully activated. mnTOR and 4E-BP1
are rapidly stimulated by insulin, amino acids, and exercise (46,
47), but their response to GH in human muscle was unknown.
Because we made our measurements at rest during the postab-
soptive state, it is possible that the addition of exercise (13)
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and/or protein meals (46, 47) while GH is elevated could have a
synergistic effect on activating mTOR, downstream signaling
pathways, and muscle protein synthesis.

The lack of change in muscle protein synthesis in response to
GH infusion is consistent with most previous studies in which
healthy humans received GH acutely (3—10 h) or up to 3 months
(6,9, 10, 48) and protein metabolism measurements were per-
formed in the postabsorptive state. The daily equivalency of GH
doses in those studies were similar to the amount administered in
the currentinvestigation, and the resulting serum GH was similar
to that observed after prolonged exercise or clinically stressful
conditions (1, 36). In comparison, studies in which GH increased
muscle protein synthesis in healthy volunteers used larger doses
(1.7- to 4-fold higher than the present study) either alone (49) or
in combination with high-dose insulin (50). In contrast to the
results in muscle, GH exerted an anabolic effect on whole-body
amino acid metabolism, as shown by reduced leucine oxidation,
increased nonoxidative leucine disposal (an index of protein syn-
thesis), and a trend for a lower rate of leucine appearance (a
measure of protein breakdown). These findings on whole-body
kinetics are consistent with previous reports and collectively
demonstrate that a major effect of short-term administration of
GH on protein metabolism in healthy subjects occurs in non-
muscle tissues (1, 6, 10).

Because we measured total GH action using a continuous
infusion of GH, we recognize that the observed changes may
differ if a more physiological (i.e. pulsatile) pattern of GH de-
livery is used. We also note that changes in muscle mitochondrial
function and mRNA expression could result from either primary
effects of GH or secondary changes in metabolites and hor-
mones, such as IGF-I. IGF-I has similar effects as GH on whole-
body protein turnover but may have an additional stimulatory
effect on protein synthesis in muscle (51-54). We are not aware
of any studies that tested whether IGF-1 exerts control of muscle
mitochondrial function, gene expression, or protein synthesis.
GH action may also be related to increased lipolysis. There is
evidence that GH-mediated suppression of protein breakdown
occurs through the elevation of fatty acids (5). As already noted,
elevated fatty acids, induced by a 4-wk high-fat diet in rats, can
stimulate an increase in many of the muscle mitochondrial pro-
teins that were shown to change with GH infusion in the present
study (42). The relative importance of primary and secondary
GH actions requires further careful investigation.

A potential area of application is assessing whether GH may
have beneficial effects on muscle mitochondrial function in el-
derly people because circulating GH concentration, the magni-
tude of exercise-mediated GH release, and muscle mitochondrial
ATP production capacity are reduced with age (17, 36, 55, 56).
However, it remains to be determined how long the changes in
mitochondrial function and gene expression persist after cessa-
tion of GH infusion and how this may affect muscle perfor-
mance. The observed effects may have little or no benefit to
physically active people for whom regular exercise may provide
equal or greater stimulus for mitochondrial biogenesis. Still,
there may be some benefits for select clinical populations, such
as GH-deficient individuals.

In conclusion, the current study demonstrates that overnight
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infusion of GH stimulates muscle mitochondrial metabolism by
increasing the mRNA levels of specific genes and raising the
capacity for oxidative ATP generation in healthy subjects. This
response in mitochondrial functional capacity is consistent with
the shift in fuel utilization away from carbohydrate toward fat
use and appears to involve the activation of specific enzymes but
does not appear to involve a change in mitochondrial protein
synthesis rate.
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